

Note: images generated with Adobe Firefly

WHY RUST

FOR EMBEDDDED DEVELOPMENT

© OxidOS Automotive 2024

White Paper – Why Rust © OxidOS Automotive

2

SUMMARY

This whitepaper discusses the advantages of the

Rust programming language, focusing on usage in

embedded systems and the safety benefits it brings

compared with classical programming languages.

This whitepaper will also present practical

examples and comparisons with the default

programming language for embedded systems - C.

Limitations: While this whitepaper does not engage

in performance metrics - feel free to reach out to

OxidOS Automotive for further information.

DISCLAIMER: While this paper presents

differences from C/C++ that are viewed as

downsides, one must understand that C

and C++ are very powerful languages that

made several design choices that were

very powerful at the time they were

written.

Rust fully benefits from the learnings of

these two languages and from modern

compiler optimizations that were not

available at the time.

CHAPTERS
1. Introduction & eco-system overview

2. Main Ideas – a high level summary

3. Language Features - presents several unique features that Rust brings to the table;

4. Memory Management - is one of the key factors for using Rust;

5. Project Organization - presents clear rules for organizing projects;

6. Backward and Forward Compatibility - that explains how Rust provides the means for

writing code that is compatible with other versions.

7. Contact & Further Information

White Paper – Why Rust © OxidOS Automotive

3

INTRODUCTION INTO RUST

Rust is a modern general-purpose programming language that prevents memory

issues at compile-time - reducing memory access-related issues without needing

heavy additional tooling. Rust is a memory-safe, type-safe, thread-safe

programming language that provides execution speed and memory footprint

similar to C.

Rust is now one of the fastest-adopted programming languages and the best

alternative to C in embedded development (where modern high-level languages

such as Python, Java, and other languages could not run). Rust is also

recommended for secure software development by the NSA.

In terms of adoptions - Rust is getting traction: the first non-C programming

language accepted in the Linux kernel (for safety reasons); Google, Amazon,

Microsoft, and many others are using Rust to rewrite safety critical components.

ECO-SYSTEM OVERVIEW

Before diving into the technical details, let us first address the question – is

anyone looking to use Rust in embedded applications?

The good news is that yes - rust is getting traction in the embedded eco-system,

with players from all categories experimenting with Rust to replace (in part) C and

C++. A few examples follow below – to the best of our knowledge (date – April

2024).

Ferrous Systems GmbH, AdaCore, and HighTec EDV-Systeme GmbH and possibly

Green Hills - are working on a certified Rust compiler for the Automotive Industry.

AUTOSAR and SAE International have working groups on Rust for automotive -

with SAE kicking off the SAfEr Rust Task Force.

Lauterbach GmbH offers essential Rust support and is expanding support for

debugging embedded Rust code.

Infineon Technologies, STMicroelectronics, and at two major chip manufacturers

that we can’t disclose are working on supporting Rust on their automotive-grade

microcontrollers.

In the automotive industry - CARIAD, Elektrobit, Ford, Renault, Toyota, and Volvo

Cars have announced they are doing Rust based development.

White Paper – Why Rust © OxidOS Automotive

4

MAIN IDEAS

The tagline of Rust is No Undefined Behavior.

Whenever there is code written, there is only one deterministic path of what that

code can do.

To achieve this, Rust has:

1. no null reference; the Rust compiler explicitly asks developers to check

this;

2. no implicit cast, even adding a u32 to a u8 must be casted;

3. safe access to shared data across threads verified at compile time;

4. uses type states to move runtime checks to compile time and force

developers to check;

5. clearly defined data types, unlike i8 or u128;

6. safe unions, that provide a discriminant to prevent wrong interpretation

of data;

7. clear code organization into crates and modules;

8. backward compatibility at crate level.

The following four chapters will go deeper into the above and add examples.

White Paper – Why Rust © OxidOS Automotive

5

LANGUAGE FEATURES

No null
Safe Rust does not provide the concept of null reference. A variable is either a

valid reference, or it does not exist. To represent the non-existing reference, Rust

uses the Option enum.

let possible_null: Option<&R> = None;

let possible_null: Option<&R> = Some(a_valid_ref);

// Using the internal reference requires checking.

match possible_null {

 Some(reference) => {

 // use the reference

 },

 None => {

 // there is no reference to use

 }

}

In most cases, the Rust compiler is able to optimize this representation into a

pointer length value, as it represents internally the None value as NULL.

As this can become very long, Rust provides some convenience functions and the

? operator.

let value = possible_reference.unwrap_or(value_if_none);

// return None, pass the value upwards the stack

let value = possible_reference?;

// return an Err(error) up the stack

let value = possible_reference.ok_err(error)?;

Rust makes it impossible to have a null reference and obliges the developer to

ensure this never happens.

C/C++ do not have any of these features built-in the language and developers

sometimes forget to check if a reference is != NULL. This leads to undefined

behavior.

White Paper – Why Rust © OxidOS Automotive

6

Safe data types

Data type sizes are a big issue in C/C++. Names like int or short do not have a

clear meaning when it comes to data sizes, and as such depend on the compiler

implementation.

Self-defining numeric data types
There is no confusion about the size of the numeric data types, they do not

depend on the compiler.

Data Type Signed Size

u8 unsigned 1 byte
i8 signed 1 byte
u16 unsigned 2 bytes
i16 signed 2 bytes
u32 unsigned 4 bytes
i32 signed 4 bytes
u64 unsigned 8 bytes
i64 signed 8 bytes
u128 unsigned 16 bytes
i128 signed 816 bytes
usize unsigned word size
isize signed word size

Boolean

Rust distinguishes between boolean values and numbers. The value true is not

equivalent to any number that is different from 0.

Control statements, such as if and while require an expression that evaluates to

a boolean value.

Source code like if (x=5) generates a compilation error in Rust.

White Paper – Why Rust © OxidOS Automotive

7

Safe Unions

Rust prevents misinterpretation of data structures by providing enums, which are

like C/C++ unions with a discriminant value.

The Value type is represented similar to a C union, but has a discriminant value.

enum Value {

 U32(u32),

 I32(i32),

 Complex {

 real: f64,

 imaginary: f64

 }

}

The use of the internal stored values requires a match statement. This prevents

undefined behavior, as the developer does not have to assume the data value

type.

match value {

 U32(u32_value) => { /* use the u32_value */ },

 I32(i32_value) => { /* use the i32_value */ },

 Complex{real, imaginary} => { /* use real and imaginary

*/ },

}

While Rust does provide union for Foreign Function Interface (interfacing other

languages, like for instance C and C++), these are marked as un safe.

Index Verification
Rust adds array indexing verification and prevents buffer overflow memory

issues.

• Array indexes are always of type usize, and as such negative indexes are

not possible.

• If an array index cannot be proven correct at compile time, a runtime

check will have to be written inserted the code.

• Array slices are references and have as payload the size of the slice.

UTF-8 out of the box

Standard Rust strings and string slices are always UTF-8.

White Paper – Why Rust © OxidOS Automotive

8

Safe Concurrency

The borrow checker requires two simple rules:

• a value can have any number of concurrent immutable borrows &value

or

• a value can have one single mutable borrow &mut value.

Rust provides two special traits, Sync and Send that, together with lifetime

annotations and the borrow checker rules, allow the compiler to reason about

the correctness for the concurrent code.

This prevents concurrency issues at compile time. There is simply now way to

borrow a mutable value to several threads, unless the developers use some kind

of synchronization mechanism, like spinlocks or mutexes.

The spawn function creates a new thread. In the new thread it runs a closure that

it receives as a parameter. By using lifetime annotations and the Send trait, it can

impose compile time restrictions. In this example, the compiler enforces the

following aspects:

The closure F can only:

• own values (which, if shared are not accessible by the owner) that

implement the Send trait (which means they are safe to be sent across

threads - for instance a MutexGuard is not safe to be send across

threads);

• contain values that implement the Send trait;

• contain references that have a 'static lifetime, which means that never go

out of scope; they will always be valid, and the caller of the spawn function

cannot provide local variables references to a new thread.

The return type of the thread can only:

• own values (which, if shared are not accessible by the owner) that

implement the Send trait (which means they are safe to be sent across

threads - for instance a MutexGuard is not safe to be send across

threads);

• contain values that implement the Send trait;

• contain references that have a 'static lifetime, which means that never go

out of scope, they will always be valid, and the caller of the spawn function

cannot provide local variables references to a new thread.

pub fn spawn<F, T>(f: F) -> JoinHandle<T>

where

 F: FnOnce() -> T + Send + 'static,

 T: Send + 'static,

The 'static lifetime requirement is essential. In the usage example, a is a local

variable that goes out of scope at the end of the current function. A reference to

it, &a does not have a 'static lifetime. The new thread cannot use it though,

as a might go out of scope before the thread uses it.

White Paper – Why Rust © OxidOS Automotive

9

fn run_worker() {

 let mut a = vec![1, 2, 3];

 thread::spawn(|| {

 println!("hello from the first scoped thread");

 // `a` might not be valid here anymore

 dbg!(&a);

 });

 // This will be executed immediately after the `spawn

function, probably before the thread actually executes.

 // `a` goes out of scope here, making `&a` invalid.

}

Sending only 'static references is a limitation, so newer Rust versions offer an

improved version of the spawn function that is related to a Scope structure and

uses 'scope generic lifetime.

pub fn scope<'env, F, T>(f: F) -> T

where

 F: for<'scope> FnOnce(&'scope Scope<'scope, 'env>) ->

T;

impl Scope {

 pub fn spawn<F, T>(&'scope self, f: F) ->

ScopedJoinHandle<'scope, T>

 where

 F: FnOnce() -> T + Send + 'scope,

 T: Send + 'scope;

}

In the usage example, a is a local variable that goes out of scope at the end of the

current function. A reference to it, &a does not have a 'static lifetime. The new

thread can use it though, as the scope function assures that it will wait for the

threads started from within the scope before returning.

fn run_worker() {

 let mut a = vec![1, 2, 3];

 thread::scope(|s| {

 // the thread is started from withing the `s`

scope.

 s.spawn(|| {

 println!("hello from the first scoped thread");

 // We can borrow `a` here.

 dbg!(&a);

 });

 }

 // This will be executed only when all the threads

started by `s.spawn` will finish execution.

 // `a` goes out of scope here.

}

White Paper – Why Rust © OxidOS Automotive

10

Generic Bounds

Rust code that contains the equivalent of C++ generics is fully checked to be

correct at definition time.

fn max<V> (v1: V, v2: V) -> V {

 if v1 > v2 {

 v1

 } else {

 v2

 }

}

Rust rejects generic code that has errors regardless of it being used or not. The

code above has an error, as the compiler cannot verify that the type V is

comparable.

2 | if v1 > v2 {

 | -- ^ -- V

 | |

 | V

 |

help: consider restricting type parameter `V`

 |

1 | fn max<V: std::cmp::PartialOrd>(v1: V, v2: V) -> V {

The code above will compile in C++ and will fail when used.

This requirement offers a very powerful guarantee for libraries. If a library

compiles, there will not be any type compatibilities when using it.

fn max<V>(v1: V, v2: V) -> V

where

 V: PartialOrd + Copy,

{

 if v1 > v2 {

 v1

 } else {

 v2

 }

}

White Paper – Why Rust © OxidOS Automotive

11

Zero Cost Abstractions

Developers don't have to pay the cost of dynamic dispatch if not necessary.

The same source definition can be used with both method dispatch means,

without any modifications.
trait Worker {

 fn run(&self) { }

}

Using any data types that implement the Worker trait with a generic type will

generate static function dispatch. The data structure will have no vtable created

and the compiler will statically dispatch the run function. This allows the compiler

to fully optimize the code.
fn runner(worker: &impl Worker) {

 worker.run();

}

If any of the usages include a dyn Worker usage, the compiler will automatically

generate the vtable and use dynamic dispatch.

Java uses always dynamic dispatch and pays the performance penalty. C++

requires the developer to annotate methods with the virtual keyword. failing to

do so leads to code that runs incorrectly.

fn runner(worker: &dyn Worker) {

 worker.run();

}

Prevent trait objects

The Rust compiler decides whether to add vtable and dynamic dispatch if and

only if a trait is used as a trait object (&dyn Trait). Whenever using trait objects,

the compiler does not know the size of the actual data type that will be used at

runtime. Requiring that all data structures that implement the trait to be Sized

 , prevents the compiler from using dynamic dispatch. This means that all

these data structures need to have their size known at compile time.

trait Worker: Sized {

 fn run(&self) { }

}

White Paper – Why Rust © OxidOS Automotive

12

The same trait bound can be used to prevent only a part of the methods to be

dynamically dispatched. The run_optimized method cannot be used with dynamic

dispatch, as it requires the implementing data type to have a known compile time

size. Rust will not allow calling this method from &dyn Worker data types.

trait Worker {

 fn run(&self) { }

 fn run_optimized(&self) where Self: Sized {}

}

C++ allows calling statically dispatched methods from dynamic contexts.

However, it calls the wrong methods, calling the methods defined on the defined

type, instead of the actual subtype.

White Paper – Why Rust © OxidOS Automotive

13

MEMORY MANAGEMENT

One important aspect that Rust brings at the table is the ability to track

references. The compiler is able to track references across function calls only by

looking at the function's declaration.

When working with references or pointers in C/C++, the two questions that pop

up are:

• Can we free a pointer?

• Do we have to free the pointer?

char * without_first_word (char *s);

int main ()

{

 char *s = strdup ("some words");

 char *wfw = without_first_word (s);

 // 1. Can we `free(s)` ?

 // 2. Do we have to `free(s)` ?

 printf ("%s\n", wfw);

 // 1. Can we `free(wfw)` ?

 // 2. Do we have to `free(wfw)` ?

}

In C/C++, the compiler cannot answer these questions just by looking at the

function declaration (which is what the compiler usually has access to).

Developers have to read the documentation and answer these questions.

Depending on how the without_first_word function is written, answer may vary.

Version 1

char * without_first_word (char *s) {

 int pos = 0;

 for (unsigned int i=0; i < strlen (s); i++) {

 if (s[i] != ' ') pos = pos + 1;

 else break;

 }

 return &s[pos];

}

int main ()

{

 char *s = strdup ("some words");

 char *wfw = without_first_word (s);

 // 1. Can we `free(s)` ? NO - dangling pointer

otherwise

 // 2. Do we have to `free(s)` ? YES - memory leak

otherwise

 printf ("%s\n", wfw);

 // 1. Can we `free(wfw)` ? NO - undefined behavior

otherwise

 // 2. Do we have to `free(wfw)` ? NO - undefined

White Paper – Why Rust © OxidOS Automotive

14

behavior otherwise

}

Version 2

char * without_first_word (char *s) {

 int pos = 0;

 for (unsigned int i=0; i < strlen (s); i++) {

 if (s[i] != ' ') pos = pos + 1;

 else break;

 }

 char *wfw = strdup(&s[pos]);

 free(s);

 return wfw;

}

int main ()

{

 char *s = strdup ("some words");

 char *wfw = without_first_word (s);

 // 1. Can we `free(s)` ? NO - undefined behavior

otherwise

 // 2. Do we have to `free(s)` ? NO - undefined behavior

otherwise

 printf ("%s\n", wfw);

 // 1. Can we `free(wfw)` ? YES - memory leak otherwise

 // 2. Do we have to `free(wfw)` ? YES - memory leak

otherwise

}

These are only two versions, but several others are valid if the code

of without_first_word changes. Moreover, an update might change

the without_first_word function and render undefined behavior in our software

that is using the library.

Rust solves this issue by using an ownership system, a borrow checker, and

lifetime annotations.

Lifetime annotation

The first question is answered by lifetime annotations. Each reference in Rust has

to be annotated with a lifetime (similar to a label).

If a function is considered a black box, input and output references have to be

annotated so that the compiler understands the link between them.

fn without_first_word<'a> (s: &'a str) -> &'a str {

 let mut pos = 0;

 for a in s.chars() {

 if a != ' ' { pos = pos + 1; }

 else { break; }

 }

 &s[pos..]

White Paper – Why Rust © OxidOS Automotive

15

}

fn main() {

 let s = String::from("some words");

 let wfw = without_first_word (&s);

 // drop(s) - compiler error, as `wfw` depends on s

 println! ("{}", wfw);

}

In this example, s is an entry reference annotated with lifetime 'a while the output

reference of the without_first_word function is annotated with the

same 'a lifetime. The Rust compiler understands that as long as someone uses

the output reference of the function, the input reference cannot be freed.

The following example shows the power of these annotations. In this case, the

input reference s and the output reference are annotated with 'a, while the input

reference n is annotated with 'b. The compiler understands that as soon as the

function ends, the n reference can be freed, regardless of how the function's

output is used, as the output does not depend on it.

fn append <'a, 'b> (s: &'a mut String, n: &'b str) -> &'a

str {

 s.push_str (n);

 s

}

fn main() {

 let mut s1 = String::from("some");

 let s2 = String::from(" words");

 let title = append (&mut s1, &s2);

 // drop(s1) - compiler error

 drop(s2); // works, as `title` does not depend on it

 println! ("{}", title);

}

Safe Memory Management

The second question is answered by the safe memory management.

The Rust compiler enforces automatic safe memory management at compile time

using the ownership system and the borrow checker.

Enforced Ownership

In Rust, each value allocated into the memory, regardless of its position (global,

stack or heap) is owned by exactly one single variable. As soon as that variable

goes out of scope, the compiler inserts the drop statement automatically.

White Paper – Why Rust © OxidOS Automotive

16

fn main() {

 let x = Box::new(5); // allocate a number on the heap

 // use `x`

 // ...

 // `x` owns the `Box` and as soon as x goes out of

scope,

 // the compiler inserts

 // drop(x);

}

When declaring a function like use_string below, the compiler understands that:

The use_string function takes ownership of the value s. In other words, the

value s is moved out of main into the use_string function.

The use_string function is responsible for dropping (freeing) it.

fn use_string<'a> (s: String);

fn main() {

 let s = String::from("some words");

 // s is moved into the `use_string` function

 use_string(s);

 // s cannot be used here anymore, it is a compiler

error

}

Borrow checker

The borrow checker allows the usage of a value without taking ownership of it. It

formally verifies at compile time that the value towards which the reference points

to is valid as long as the references is used. This prevents the dangling

pointer undefined behavior.

When declaring a function like use_string below, the compiler understands that:

The use_string function borrows the value s. In other words, the value s is a

reference from main.

The use_string function is not responsible for dropping (freeing) it.

fn use_string<'a> (s: &String);

fn main() {

 let s = String::from("some words");

 // s is borrowed into the `use_string` function

 use_string(&s);

 // ...

 // `s` can be used here

 // ...

 // the value that `s` owns will be dropped by the

compiler when `s` goes out of scope

 // drop(s);

}

White Paper – Why Rust © OxidOS Automotive

17

When declaring a function like use_string below, the compiler understands that:

• The use_string function borrows the value s. In other words, the value s is

a referenced from main.

• The output reference of the function depends on the input

reference s (due to the lifetime annotation).

• The use_string function is not responsible for dropping (freeing) it.

fn use_string<'a> (s: &String) -> &'a str;

fn main() {

 let s = String::from("some words");

 // s is borrowed into the `use_string` function

 let used = use_string(&s);

 // ...

 // `s` cannot be dropped here as the borrow did not

expire

 // the borrow expires when `used` is not used

anymore.

 // ...

 println!("used is {}", used);

 // ...

 // the value that `s` owns will be dropped by the

compiler when `s` goes out of scope

 // drop(s);

}

Borrow Rules

The borrow checker requires two simple rules:

• a value can have any number of concurrent immutable

borrows &valueOR;

• a value can have one single mutable borrow &mut value.

This prevents concurrency issues at compile time. There is simply now way to

borrow a mutable value to several threads, unless the developers use some kind

of synchronization mechanism, like spinlocks or mutexes .

White Paper – Why Rust © OxidOS Automotive

18

PROJECT ORGANIZATION

Crates and modules

Rust provides a clear way of organizing code into crates and modules.

crates are similar to C/C++ binaries or libraries. A crate can contain a single library

and multiple binaries. The crate is the main element that gets published to a

crates repository.

module is a subdivision of a crate, that groups together data types, submodules

and functions. It is used as the scope of visibility rules. Modules can be imported

into scope and renamed at imports.

Dependencies in Rust are represented by crates. In contrast to C/C++ where the

libraries and namespaces do not enforce any organization, Rust provides a clear

definition of what a crate is.

Crates are versioned using sematic versioning.

Most versions of C/C++ do not provide any mean of code organization except

folders and header (.h or .hpp) files. While C++ 20 does define the concept of

module, it is experimental in most compilers and mixes headers, namespaces

and modules, which makes code organization loose.

Prevent Duplicate Names

One important aspect of code organizing is preventing name clashes.

Rust does not allow importing into scope two items, modules or data types that

have the same name. Importing two items with the same name results in a

compiler error.

Rust allows the renaming of items at import time.

DataTypes

Renaming applies to data types.

use crate_name::module1::submodule2::DataType as

NewDataTypeName;

use crate_name::module1::submodule1::DataType as

NewDataTypeName2;

C does not provide any means of data type renaming, which makes using two

data types with the same name inside one scope impossible. The only solution is

to change the source code where the date type is defined and rename it. While

C++ does provide type aliasing with namespaces, it gets difficult to read.

White Paper – Why Rust © OxidOS Automotive

19

Modules
Renaming applies to modules.

Rust does not allow importing two items into one scope.
use crate_name::module::submodule as crate_name_submodule;

use another_crate_name::module::submodule as

crate_name_submodule;

C does not allow namespaces.

Scoped imports

Rust allows importing of items limited to a scope. Developers are not forced to

import items in the global scope, they can import items locally.

fn f() {

 use crate_name::module::DataType;

 // DataType is valid up to the end of the function f.

}

fn main() {

 use another_crate_name::module::DataType;

 // DataType is valid up to the end of the function

main.

}

C does not allow any kind of scoped imports, it only uses the #include directive.

Scoped imports rename
use crate_name::module::DataType;

fn main() {

 // DataType has te be renamed in this scope as it would

conflict with

 // the global import

 use another_crate_name::module::DataType as

DataTypeMain;

}

C does not provide any means of data type renaming, which makes using two

data types with the same name inside one scope impossible. The only solution is

to change the source code where the date type is defined and rename it.

White Paper – Why Rust © OxidOS Automotive

20

BACKWARD AND FORWARD
COMPATIBILITY

One important aspect of programming languages is backward compatibility.

C/C++ provide backward compatibility by only adding features to the compiler

which results in the impossibility of enforcing new good practices rules without

breaking code in the dependencies.

Rust editions allow exactly this. Every three years, a new Rust edition is coming

out. With every edition, Rust drops a set of features that are considered

deprecated or unsafe. Every crate specifies which edition of Rust it wants to use.

[package]

...

edition = '2021'

The Rust compiler supports all the editions that where released. Each crate can

specify which editions it wants to use. Each create is compiled independently,

regardless of whether it is a dependency or the main crate.

Main crate's cargo.toml.

[package]

...

edition = '2021'

[dependencies]

dependency = "x.y.z"

dependency crate's cargo.toml.

[package]

name = "dependency"

...

edition = '2024'

In this case, the main crate will be compiled using the 2024 Rust version, that does

not support some of the older features anymore, while the dependency crate will

be compiled with the 2021 version of Rust, and as such may use some older

features that have been dropped in the newer edition.

This assures that the build is never broken, even if the main crate uses a newer,

and possibly stricter, edition of Rust.

White Paper – Why Rust © OxidOS Automotive

21

CONTACT & FURTHER INFORMATION

Feel free to reach out to OxidOS Automotive for further information, discussions

on how OxidOS is using Rust to empower embedded software developers to

develop secure, portable and reusable embedded code and collaboration

opportunities.

https://www.oxidos.io/

hello@oxidos.io

https://linktr.ee/oxidos

https://www.oxidos.io/
mailto:hello@oxidos.io
https://linktr.ee/oxidos

	WHY RUST
	INTRODUCTION INTO RUST
	ECO-SYSTEM OVERVIEW

	MAIN IDEAS
	LANGUAGE FEATURES
	No null
	Safe data types
	Self-defining numeric data types
	Boolean

	Safe Unions
	Index Verification
	UTF-8 out of the box
	Safe Concurrency
	Generic Bounds
	Zero Cost Abstractions
	Prevent trait objects

	MEMORY MANAGEMENT
	Version 1
	Version 2
	Lifetime annotation
	Safe Memory Management
	Enforced Ownership
	Borrow checker
	Borrow Rules

	PROJECT ORGANIZATION
	Crates and modules
	Prevent Duplicate Names
	DataTypes
	Modules
	Scoped imports
	Scoped imports rename

	BACKWARD AND FORWARD COMPATIBILITY
	CONTACT & FURTHER INFORMATION

